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ABSTRACT Active interrogation (Al) is a promising technique to detect shielded special nuclear mate-
rials (SNMs). At the University of Michigan, we are developing a photon-based Al system that uses
bremsstrahlung radiation from an electron linear accelerator (linac) as an ionizing source and trans-stilbene
organic scintillating detectors for neutron detection. Stilbene scintillators are sensitive to fast neutrons
and photons and have excellent pulse shape discrimination (PSD) capabilities. The traditional charge
integration (CI) method commonly used for PSD analysis eliminates piled-up pulses and relies on a particle
discrimination line to separate neutrons and photons. The presence of the intense photon flux during Al
creates a significant number of piled-up events in the stilbene scintillator, thereby posing a great challenge
to the traditional CI method. Identifying true single neutron pulses becomes challenging due to the presence
of a pile-up cloud and overlapping neutron, photon and pile-up clouds in the PSD analysis. To mitigate
the effect of pulse pile-up and identify true single neutron pulses from stilbene scintillators, an artificial
neural network (ANN) system is developed. The developed ANN system identifies single neutron pulses
and neutron-photon combinations from piled-up events. The results obtained from a 2>2Cf measurement in
the presence of the intense photon flux show that the developed ANN system outperforms the traditional
CI method. Since many piled-up events lie above the particle discrimination line, they get misclassified as
neutrons by the traditional CI method resulting in 27% overestimation of the net neutron count rate during
the linac pulse. The overall net neutron count rate (single and restored neutrons) during the linac pulse,
estimated by the ANN system is 62.32% of the ground truth. Energy spectroscopy of the ANN attributed
single neutron pulses further provides evidence on the detection of prompt fission neutrons from the 2>2Cf
fission source.

INDEX TERMS Artificial neural network, high photon flux, linac, pile-up recovery, trans-stilbene.

I. INTRODUCTION

Non-destructive assay (NDA) techniques, classified as either
passive or active, are widely used to detect radiation emit-
ted from special nuclear materials (SNMs). Passive NDA
techniques measure radiation from the spontaneous decay
of the nuclear material [1]. In such techniques, the desired
signals are the characteristic gamma-ray energies emitted
spontaneously as a result of radioactive « or §-particle decay.
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The shielding around the SNM may cause attenuation of the
characteristic gamma rays, thereby limiting passive gamma-
ray NDA. Another challenge in passive gamma-ray NDA is
the ability of the detector to resolve the different gamma-
ray energies. Neutrons that are emitted spontaneously as a
result of fission or as a result of («, n) reaction on low-Z
materials are another desired signal in passive NDA. How-
ever, not all isotopes of SNM, for example 2354, have high
spontaneous fission, thereby limiting neutron emissions. Low
neutron emissions limit detection signals and therefore pose
a challenge to the passive neutron NDA.
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The limitations of passive NDA techniques can be over-
come using active NDA. In active NDA, targets of materials
are bombarded with an ionizing radiation inducing nuclear
reactions that help identify or quantify SNM through fission
or isotopic identification [2]. Fission reactions are induced in
SNM when irradiated with neutrons or high-energy photons,
resulting in emission of 2-3 highly energetic prompt fission
neutrons and approximately 8 prompt gamma rays. For up to
several minutes after fission, SNM continues to emit delayed
neutrons (approximately 0.01-0.02 per fission) and delayed
gamma rays (approximately 6-7 per fission) [3]. In active
NDA, both prompt and delayed signatures comprise the
desired signal. The higher yield from prompt fission signa-
tures has led to the development of many Al systems [4]-[6].

Detection of prompt fission signatures require state-of-the-
art detectors, such as the trans-stilbene organic scintillating
detector. Unlike the traditional >He neutron detector that
detects thermal neutrons, stilbene can detect fast neutrons.
In stilbene organic scintillators, fast neutrons are detected
through elastic scatter on hydrogen nuclei whereas gamma
rays interact through Compton scatter [7]. The nature of
the excited particle determines the fraction of light that
appears in the slow component of the scintillator voltage
pulse (FIGURE 1a). This dependence allows one to differen-
tiate between particles that deposit the same amount of energy
in the detector. The process is referred to as the pulse shape
discrimination (PSD) [8] and stilbene organic scintillators
have excellent PSD capabilities. A typical PSD plot from a
232Cf spontaneous fission source is shown in FIGURE 1b.
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FIGURE 1. a) Traditional charge integration (Cl) method for pulse shape
discrimination (PSD), and b) An example of PSD contour plot from 252¢f
spontaneous fission source (51.41 keVee threshold).

Dual particle sensitivity can present great challenges in
environments where one radiation type dominates another,
such as in the photon-based Al scenario. In this technique,
high energy photons are used to induce photofission reactions
in SNM. The intense photon flux during interrogation causes
serious pulse pile-up resulting in substantial suppression of
the desired neutron signal from photofission. The presence
of additional pulses in the pulse tail leads to misclassification
of piled-up events as neutrons during PSD.

In this work, an artificial neural network (ANN) system has
been developed to mitigate the effect of pulse pile-up in trans-
stilbene organic scintillators during photon Al of SNM. The
structure of this paper is as follows. A summary of existing
literature will provide context on the effectiveness of ANN for
nuclear safeguard and non-proliferation applications. We then
describe the architecture of the ANN system that has been
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developed. The following two sections will provide details
on the training and testing process of the developed ANN
system. We conclude with a discussion on the advantages
and disadvantages and thoughts on directly implementing the
ANN system on hardware.

II. ARTIFICIAL NEURAL NETWORK IN NUCLEAR
SAFEGUARDS AND NON-PROLIFERATION

Artificial intelligence is a technique that enables computers to
mimic human behavior. Deep learning is a subset of artificial
intelligence that extracts patterns from data using ANNs.
The network learns in a similar fashion as the human brain
(FIGURE 2). In humans, the learning is at its greatest when
they undergo the most dramatic maturational change [9].
With recent technological advances in computing resources,
ANN hardware accelerators and deep architectures, such
as neural nets (NN), ANN technology has gained matu-
rity to learn complicated functions that can represent high-
level abstractions [10]. The detection of SNM is one such
high-level abstraction that requires great synchronization of
fundamental physics and technology.
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FIGURE 2. Schematic of an artificial neural network inspired from the
human brain [11].

As stated earlier, neutrons and gamma rays are the desired
signals when trying to detect SNM. Organic scintillators (lig-
uid or solid) are desired in such applications because of their
ability to simultaneously detect both radiation types; leading
researchers to develop ANN systems for different kinds of
organic scintillating detectors. In 2009, Ronchi et. al demon-
strated that NN outperforms commonly used two dimensional
PSD methods [12]. The detector used by Ronchi et. al was a
liquid scintillation detector, BC-501. The authors comment,
in the region of small deposited energies, NN provided better
classification than conventional PSD methods, is encourag-
ing. The PSD plot represented in FIGURE 1b shows that
at low tail and total integral values, the two particle clouds
overlap thereby posing a challenge to traditional CI methods.
A similar study was performed by Liu et. al in the UK,
where the authors used EJ-301 liquid organic scintillating
detector [13]. ANN are also found to have the shortest pro-
cessing times compared to different PSD methods such as,
traditional CI, frequency gradient analysis, K-means++- clus-
tering etc. [14].
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Nuclear safeguards require state-of-the-art technology
to characterize a nuclear material. NEutron Detector
Array (NEDA) is one such state-of-the-art detection system
built for multiple applications [15]. NEDA is a versatile
device with 331 EJ-301 liquid scintillators that has high
detection efficiency, excellent particle discrimination and
high-count rate capabilities. Fabian et. al recently developed
three different ANN architectures for neutron and gamma
ray discrimination in the neutron detector of NEDA [16].
Multi-layer perceptron (MLP), convolutional neural net-
work (CNN) and long short-term memory (LSTM) are the
three ANN architectures that were studied by Fabian et. al.
The authors concluded that all three ANN architectures
performed quite similarly, and LSTM was found to be robust
against time misalignment of the scintillator voltage pulse.
Another comparative study of ANN architectures was per-
formed in 2013 [17]. Two ANN architectures, namely linear
vector quantization (LVQ) and self-organizing maps (SOM),
performance was investigated. The investigation found SOM
to have superior overall accuracy at all energies.

Piled-up pulses present challenges in PSD analysis. In low-
flux scenarios, piled-up pulses are rejected. However, in high
radiation environments, such as photon Al, elimination of
piled-up pulses can result in huge information loss. If one
can decompose individual single pulses from piled-up events,
information can be retained. Belli et. al provides a method
for recovery of piled-up pulses from NE-213 detector [18].
In this method, the first pulse in a piled-up event is fitted with
a response function. The response function is specific to the
detector as it is a function of the scintillator’s decay constant,
and time constant of the measuring circuit. The second pulse
is then recovered after subtracting first partially fitted pulse
from the piled-up event. The subtraction process continues
until all single pulses from the piled-up event are recovered.
The process proposed by Belli et. al is non-trivial and quite
complex to implement in real time. In 2018, Fu et. al used
ANN to recover piled-up pulses [19]. Fu et. al demonstrated
the capability of ANN in recovering and identifying neutron
and photon composition from piled-up events.

ANN architectures that exist in the literature have demon-
strated their potential in nuclear safeguards and nonprolifera-
tion applications. Some of the networks even outperformed
traditional methods. However, there is very limited litera-
ture available for the use of ANN in photon Al scenarios.
In this work, the authors aim at developing an economi-
cal photon-based Al system using commercially available
electron linear accelerator (linac), a trans-stilbene organic
scintillating detector and an ANN training platform.

Ill. DEVELOPED ANN SYSTEM

At the University of Michigan, we developed an ANN sys-
tem that consists of six NNs. All NNs work in conjunction
to produce the desired classification of voltage pulses. The
ANN system represented in FIGURE 3 is a unique system in
which small well-defined NNs are used to perform detailed
classifications. Using multiple NNs allow the flexibility to
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add classification results in the future without significantly
affecting the existing results. Additionally, the ANN sys-
tem allows for easy interpretation of classification results
as well as for updates and future improvements. Our ANN
system, in combination with two cleansers, presents a novel
approach for classifying single and piled-up pulses from a
trans-stilbene organic scintillator.
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FIGURE 3. ANN system developed for stilbene organic scintillating
detector.

Data is pre-processed before it is sent to the ANN system.
Pre-processing includes converting ADC units to voltage,
flipping the voltage pulse from negative to positive polarity,
and performing baseline corrections. The rising edge of each
voltage pulse is aligned at 24 ns (12 digitizer sample) using
digital constant fraction discrimination (CFD).

After pre-processing the data, Classify Top NN categorizes
single, piled-up (double pulses), and triple/quadruple type
pulses. The triple/quadruple type pulses are neither recovered
nor processed for further classification. Following the singles
branch in FIGURE 3, Cleanser I provides an independent
verification of the single pulse classification from Classify
Top. The independent verification is important because the
intense photon flux during Al may introduce additional noise
in the voltage pulse that may result in misclassification from
Classify Top. If Cleanser I flags pulses as misclass, they are
reclassified as piled-up events. If not flagged, these noisy
pulses may likely be classified as neutrons by Classify Sin-
gles NN because of increased area in the tail. The “‘true”
remaining single pulses are determined to either be a gamma
or neutron pulse, represented in FIGURE 3 with a “G” for
gamma/photon and an “N”* for neutron, in Classify Singles.

Now considering the piled-ups branch of FIGURE 3,
Cleanser II processes the piled-up events categorized by
Classify Top (and Cleanser I). Cleanser II separates out
poor signal-to-noise ratio (SNR) pulses from ““true” piled-up
events. The “true” piled-up events are then fed into Classify
Pile-Up NN to be classified into three groups (close, split, and
cut type piled-up events as defined in Section IV). For each
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TABLE 1. Structure of neural networks used in the developed ANN system.

Dimension ~ Dimension Activation Number of R . . .
. . . . Activation function Dimension of
NN Processing of input of output function at hidden . .
at hidden layers hidden layers
layer layer output layer layers
Classify Top* 110 3 Softmax 1 Log sigmoid** 30
Classify Singles* 110 2 Softmax 1 Log sigmoid** 30
Classify Pile-Up 110 3 Softmax 1 Tansig 3
. #1: Log sigmoid** #1:30
£
Classify Close 120 5 Softmax 2 #: Tansig - 10
Classify Split 120 4 Softmax 1 Tansig 7
Classify Cut 120 2 Softmax 1 Tansig 1

*  Stacked neural network
** Encoder layer

piled-up category, there is a corresponding NN processing
that identifies neutron-photon combinations.

All NNs are fully connected feedforward neural networks
that are trained using the scaled conjugate gradient (SCG)
learning algorithm [20]. A cross-entropy loss function is
implemented to calculate the loss during training of NNs.
The maximum number of epochs to train is set to 25,000.
The training is terminated when a loss of 1E-3 is achieved
on the training dataset. Additionally, if the non-training val-
idation subset loss increases for a consecutive 100 epochs,
the network stops training; we call this epoch n. At this point,
the network disregards the latest 100 epochs and chooses the
weights from epoch n-100.

The hidden layers in all NNs are aimed to have the small-
est dimension to reduce computational complexity while
maintaining the performance of the network. The reduced
complexity is particularly important for real time FPGA
implementation of the ANN in future work. For each NN, we
start with an arbitrarily large dimension of the hidden layer.
The dimension is gradually reduced, and for each dimension
of the hidden layer the NN classification accuracy and error
are determined. The percent accuracy and error are obtained
from confusion matrices that are generated for each NN from
a pre-labelled test dataset. The chosen dimension of the hid-
den layer is the one at which the percent accuracy is highest
and the percent error is the least, except in some cases where
the computational complexity cost outweighs the marginal
increase in accuracy. TABLE 1 summarizes the structure of
NNs used in the ANN system. Following is a more detailed
discussion on each NN.

Classify Top is a stacked NN [21] in which an encoder
layer is connected to a softmax output layer. A log sigmoid
activation function is used for the encoder layer. The dimen-
sion of the encoder layer is 30 and the softmax output layer
has a dimension of 3. The input vector to the NN consist
of 100 Euclidean-normalized samples (1) and 10 segmented
maximum values, S,

NOTM(Euclidean); = n—2
Y, Zj:l S]

where, S; is the i digitizer sample in volts and 7 is the total
number of digitizer samples per voltage pulse. The segmented
maximum is found by dividing the Euclidean-normalized

ey
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voltage pulse, which consist of 100 normalized samples, into
10 segments of 10 samples each. For each segment of 10 sam-
ples, the maximum value in the segment is called segmented
maximum.

Classify Singles is also a stacked NN in which the encoder
layer has a dimension of 30 and the softmax output layer’s
dimension is 2. Classify Singles NN takes in 100 cumulative
distribution function (CDF) samples (3) and 10 segmented
maximum values as inputs,

L (2)
er';l Sj

1
CDF; = Znorm(area)j 3)
j=1

normarea); =

where, CDF; is the cumulative distribution function at ith
sample. Unlike the Classify Top NN that uses Euclidean-
normalized samples for segmented maximum, Classify Sin-
gles NN uses 100 area normalized samples (2).

Classify Close NN is a differently stacked NN in which
an encoder layer is connected to a hidden layer that is then
connected to a softmax output layer. The activation function
used for the hidden layer is a hyperbolic tangent sigmoid
function (tansig). A log sigmoid activation function is used
for the encoder layer that has a dimension of 30. The dimen-
sion of tansig hidden layer is 10 and the dimension of softmax
output layer is 5. The input vector to the NN consists of 100
Euclidean-normalized samples, 10 segmented maximum val-
ues and 10 segmented area values. Segmented area is the area
of each segment of the Euclidean-normalized voltage pulse.

Classify Pile-Up, Classify Split and Classify Cut NNs have
tansig hidden layer connected to a softmax output layer. All
three NNs take in 100 Euclidean-normalized samples and
10 segmented maximum values as inputs. In Classify Split
and Classify Cut NNs, 10 segmented area values are also
included in the input vector. The dimension of the tansig
hidden layer is 3 for Classify Pile-Up NN, 7 for Classify Split
NN and 1 for Classify Cut NN. The dimension of softmax
output layer is 3 for Classify Pile-Up NN, 4 for Classify Split
NN and 2 for Classify Cut NN.

Cleanser I is an autoencoder based cleanser that helps flag
pulses with extra noise. The autoencoder consists of two fully
connected layers; one is an encoder layer and the other is a
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decoder layer. FIGURE 4 provides visualization of the steps
performed in Cleanser I. An autoencoder, which is trained
on clean single pulses, is used as a denoiser to the original
Euclidean-normalized pulse. The decoder from the autoen-
coder reconstructs the original Euclidean-normalized pulse.
There is no noise/ripple present in the reconstructed pulse.
The ratio of the absolute difference between reconstructed
and original pulse to the reconstructed pulse is computed (4),
|reconstructed — original |

ratio = 4)
reconstructed

where reconstructed is the decoded pulse and original is the
Euclidean-normalized pulse. If the ratio exceeds a set thresh-
old value, the pulse is flagged as a misclassified single pulse.
Both the encoder and decoder use a log sigmoid activation
function. The encoder layer has a dimension of 30 and the
decoder layer’s dimension is 100. Cleanser I provides an inde-
pendent verification to the singles classification produced by
the Classify Top NN, thereby increasing confidence in the
neutron and photon classification of a single pulse.
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FIGURE 4. a) An example of a noisy pulse decoded using the trained
autoencoder, and b) Ratio computed on the noisy pulse.

Cleanser II differentiates poor SNR pulses from “true”
piled-up events. The second voltage pulse in the piled-up
event must exceed a set threshold for it to be considered as
a “true” piled-up event. The threshold is user-specified and
all piled-up events that pass the voltage threshold check on
the second pulse are sent to the Classify Pile-Up NN for
further classification.

IV. TRAINING OF THE DEVELOPED ANN SYSTEM

The ANN system is trained using the Deep Learning Tool-
box from MATLAB [22]. Training requires sets of known-
neutron and known-photon pulses. A time-of-flight (TOF)
measurement is used to collect high-confidence neutron and
photon single pulses from a >>2Cf spontaneous fission source.
To reduce the contribution of gamma rays, start and stop
detectors used in the TOF setup are enclosed in 5.08 cm
thick lead shielding cave. The measured TOF spectrum is
shown in FIGURE 5a. A neutron region is defined in the TOF
spectrum. All pulses that belong to the neutron region are
subject to PSD using the traditional CI method [23] to remove
any present gamma contamination. The traditional CI method
and time-tags from the TOF provides high-confidence neu-
tron single pulses. The remaining pulses that lie outside
the neutron region are gamma single pulses. A 200 mV
(280.8 keVee) threshold is applied to all single pulses for
better SNR. FIGURE 5b shows the pulse height distribution
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for the high-confidence neutron and gamma single pulses
used for the ANN training.

The clean high-confidence neutron and gamma single
pulses are used to synthesize piled-up, triple and quadruple
type pulses. The synthesis of piled-up events establishes
ground truth training data for the ANN system. Three differ-
ent kinds of piled-up events; close, split and cut, with defini-
tions based on the time separation between two voltage peaks
are synthesized. An example of each type of piled-up event
is represented in FIGURE 6 and FIGURE 7. The developed
ANN system cannot recover triple, quadruple and too-close
type of piled-up events. In the case of cut type piled-up events,
only the first voltage pulse is recovered.

The training dataset to the Classify Top NN is 75,000
pulses split evenly between single, close, split, cut and
triple/quadruple type pulses. The training of Classify Pile-
Up NN is performed using 150,000 pulses comprised of
close, split and cut types. Classify Split NN and Classify Cut
NN are trained with a total of 80,000 synthesized neutron-
photon piled-up events (20,000 piled-up events for a given
combination of neutron and photon). The training of Classify
Close NN is performed with a total of 75,000 synthesized
piled-up events (15,000 pulses for each subtype of close type
piled-up events). Classify Singles NN is trained with a total
of 30,000 neutron and photon single pulses.

All six NNs are trained individually in a supervised fash-
ion. The three stacked NN, Classify Top, Classify Singles
and Classify Close are trained in three steps. First step
includes training of hidden layers in an unsupervised fashion
using the autoencoder. This is then followed with the training
of the softmax output layer. In the final step, all layers are
joined together to form a stacked NN, which is trained for
one final time in a supervised fashion.

A small set of the data (5,000 pulses for each single,
close, split, cut and triple/quadruple category) is used to test
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the performance of the trained ANN system. The confusion
matrix generated from the test dataset is given in FIGURE 8.
The classification of single pulses produced by the ANN sys-
tem is 99.60% accurate. The neutron-photon combinations
from close and split type piled-up events are identified with
an average accuracy of 98.98%. In cut type piled-up events,
the classification of the primary voltage pulse is 99.85%
accurate. An overall classification accuracy of 99.50% is
obtained for the developed ANN system.

V. TESTING ANN SYSTEM IN PRESENCE OF INTENSE
PHOTON FLUX

Our laboratory at the University of Michigan houses a 9 MeV
endpoint electron linear accelerator (linac) [24] that is very
similar to clinical linacs used at hospitals for radiation ther-
apies. Clinical linacs have more practical applications than
other accelerators, which are used in laboratories for various
experiments. The use of commercially available economical
equipment makes the proposed photon-based active interro-
gation system applicable for infield operations.
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FIGURE 9. Schematic of the experimental setup (top-down view).

The linac produces bremsstrahlung photons that are ener-
getic enough to induce photofission reactions in SNM [25].
232Cf is a spontaneous fission source that emits prompt fis-
sion neutrons; a desired signal during photon Al. We mea-
sure a 2>>Cf neutron source in the presence of the intense
bremsstrahlung photon flux from the linac. The 22Cf source
is placed off-axis from the linac beam to prevent additional
radioactivity being induced as a result of bremsstrahlung
bombardment. The measurement of the 252Cf source in the
presence of strong photon flux is referred to as the active
252Cf measurement. A passive 292Cf measurement (in the
absence of the intense photon flux) establishes ground truth
neutron detection rates for the active measurement. The
prompt neutron source used in this study is a point source with
an activity of 1.21E4+03 1Ci on the day of the experiment.

We use four trans-stilbene organic scintillating detectors
from Inrad Optics [26] coupled to a 51 mm 9214B photo-
multiplier tube from ET Enterprises [27] to detect prompt
fission neutrons. Each detector has a diameter of 5.08 cm
and a height of 5.08 cm. The detectors are placed in a lead-
tin-copper shield cave to reduce photon flux incident on the
detectors. The tin and copper in the shielding cave help shield
low energy characteristic Ko and K X-rays that are emitted
from lead as a result of high energy bremsstrahlung pho-
ton absorption [28]. Data is acquired using CAEN’s V1730
16-channel, 14-bit, 500 MS/s digitizer [29]. FIGURE 9 shows
the detector setup during active 252Cf measurement.

Active background refers to a background measurement
performed in the presence of the intense bremsstrahlung pho-
ton flux from the linac and in the absence of a 2>2Cf neutron
source. The laboratory that houses the linac has significant
amount of lead and concrete shielding to reduce radiation
dose delivered to the public. The 9 MeV bremsstrahlung
radiation is energetic enough to induce photonuclear, (g, n),
reactions in isotopes of lead and other high-Z targets such
as tungsten, copper, etc. [25]. An active background mea-
surement helps to quantify neutrons that are produced
through photonuclear reactions in the surrounding laboratory
materials.

VI. RESULTS

The linac used for active measurements is a pulsed acceler-
ator that is currently licensed to operate at a repetition rate
of 50 Hz. Prompt fission neutrons from hidden SNM will be
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252¢f (w/ pile-up cleaning). Note that the neutron region represented in
these plots is for illustration purposes only.
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emitted during the linac pulse. The developed photon-based
Al system aims at detecting neutrons during the linac pulse
because prompt fission neutrons are more abundant and ener-
getic than delayed neutrons that could be detected between
linac pulses. Unlike the linac, the 22¢f spontaneous fission
source is a continuous source emitting neutrons at all times.
We separate out during-linac-pulse and in-between-linac-
pulse voltage signals to identify neutrons that are detected
during the bremsstrahlung photon burst from the linac.

A. ACTIVE 252Cf NEUTRON COUNT RATES USING THE
TRADITIONAL CI METHOD

During-linac-pulse detections are processed with the tra-
ditional CI method [23]. Clipped and below threshold
(280.8 ke Vee threshold) pulses are eliminated in this analysis.
Neutrons and photons are separated by a particle dis-
crimination line obtained using an auto slice PSD algo-
rithm [8] on passive 22Cf dataset. Without any pile-up
cleaning, net neutron count rates determined by subtract-
ing active background neutron rates from active 2>2Cf neu-
tron rates exceed ground truth by an average of 38% in
detectors 0, 1, and 2 (FIGURE 10a). The overestimation
is because of the presence of a pile-up cloud above the
particle discrimination line that gets misclassified as neu-
trons. The overlapping of the neutron, photon, and pile-up
clouds (FIGURE 11a and FIGURE 11b) in the PSD plots
pose further challenges to particle discrimination and pile-up
elimination.
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FIGURE 14. Detector 0 PSD contour plots for ANN attributed single
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and d) net active 252Cf.

c

A fractional pile-up cleaning approach is used to eliminate
piled-up events from active measurements. Piled-up events
are identified as those having a second voltage pulse with a
leading edge that increased by at least 12% of the height of the
first voltage pulse in one digitizer step. After pile-up cleaning,
there still exists many piled-up events that are misclassified as
neutrons (FIGURE 11c and FIGURE 11d) resulting in 27%
overestimation of net neutron rates in detector 0, 1 and 2
(FIGURE 10b). A lower fractional cleaning percentage can
be used to eliminate remaining piled-up events, however that
will result in over-cleaning of the active dataset.

B. ACTIVE ?52Cf NEUTRON COUNT RATES USING THE
DEVELOPED ANN SYSTEM

For active background and active 2>’Cf measurements,
during-linac-pulse detections are processed with the
developed ANN system. FIGURE 12 shows the breakdown
of pulses during active background and active 2>2Cf mea-
surements in detector 0. A significant portion (29%) of the
total detected pulses belongs to the unclassifiable category.
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FIGURE 15. Energy spectrum for ANN attributed single neutrons:
a) detector 0, b) detector 1, c) detector 2, and d) detector 3.

This unclassifiable category of pulses includes too-close
type of piled-up events, triple/quadruple type and poor SNR
pulses. Nearly 29% of the total piled-up events (total piled-
up events include both classifiable and unclassifiable pulses)
are recovered by the ANN system. The other three detectors
used during active measurements exhibits similar breakdown
of pulses.

FIGURE 13 summarizes overall net neutron count rates as
determined by the developed ANN system. Using only single
neutron pulses, the net active 252Cf count rates account for an
average of 32.55% of the ground truth in all four detectors.
When ANN system recovered neutrons are added, the overall
net count rate increases to 62.32% of the ground truth. There
still exist gaps between the ground truth and the measured
net active neutrons due to lost pulses to the unclassifiable
category.

The PSD contour plot provides insight on the ANN system
classification of single neutron pulses. FIGURE 14 repre-
sents a PSD contour plot for the ANN attributed single neu-
tron pulses in detector 0. For reference, passive 2>2Cf PSD
and a particle discrimination line are included. The ANN
attributed neutrons from active measurements constitute a
neutron cloud in the exact same location as one would expect
from passive measurement. The PSD contour verifies the
ANN system classification of single neutrons.

Spectroscopic information on the detected neutrons can
provide further insight on the ANN system classification.
In the case of active background measurement, neutrons
are primarily produced through photonuclear reactions on
the lead collimator and beamstop in the laboratory. Photo-
neutrons have limited kinetic energy as determined by
the (g, n) reaction Q-value and energy of the interrogat-
ing photon. However, fission neutrons can have energies
up to 10 MeV or even higher (Watt energy spectrum).
The differences in the energy of neutrons that are produced
during active interrogation help distinguish high-Z shielding
targets from SNMs. Neutron energy spectrum is constructed
for ANN attributed single neutron pulses (FIGURE 15).
Across all four detectors, active 222Cf has more area than the
active background spectrum at higher energies (> 3 MeV).
The neutron spectroscopy information obtained from the
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ANN system provides evidence on the detection of fission
neutrons from the 2>Cf spontaneous fission source.

VIl. CONCLUSION

Detection of hidden SNM is a challenging problem. Constant
efforts are being made by researchers across the globe to pro-
vide a feasible and economical solution to the problem. In this
work, we attempted to provide a solution to SNM detec-
tion using active interrogation with commercially available
economical equipment. Trans-stilbene organic scintillating
detectors are state-of-the-art detectors capable of detecting
fast neutrons during the linac pulse. This is the desired signal
during photon active interrogation of SNMs.

During photon active interrogation, pulse pile-up is
inevitable due to the presence of the intense photon flux. The
desired neutron signal is very weak compared to the photon
signal. Traditional methods struggle to identify true neutron
pulses due to the overlapping neutron, photon and pile-up
clouds. The misclassification of piled-up events as neutrons
result in overestimation of neutron rates by traditional meth-
ods. The ANN system successfully identified single neutron
pulses constituting an average of 32.55% of the ground truth
neutron rates. Neutron and photon compositions identified
from piled-up events helped restore missing information,
thereby increasing the overall net neutron rates to 62.32%
of the ground truth. Spectroscopic information obtained from
the ANN identified single neutron pulses clearly indicates
the presence of fission neutrons (>3 MeV neutrons) from the
252Cf spontaneous fission source.

In this work, we developed and demonstrated an artificial
neural network that can detect prompt fission neutrons with
greater accuracy than traditional algorithms during photon
active interrogation. The photon active interrogation scenario
discussed in this work is used as an example to demon-
strate the effectiveness of the proposed detection system.
The combined trans-stilbene and artificial neural network
system can be used to detect fast neutrons in any high
radiation environments. With recent technological advances
in ASIC circuits, FPGAs and ANN hardware accelerators,
the developed ANN system can be implemented in real
time.
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