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Emerging Emerging MicrosensorMicrosensor ApplicationsApplications

Industrial Plants and Power Line Monitoring
(courtesy ABB)

Operating Room of the Future
(courtesy John Guttag)

NASA/JPL sensorwebs
Target Tracking & Detection

(Courtesy of ARL)
Location Awareness

(Courtesy of Mark Smith, HP)

Websign



Sensor System RequirementsSensor System Requirements
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Power Aware Power Aware MicrosensorMicrosensor ConsiderationsConsiderations
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First Generation Wireless First Generation Wireless MicrosensorMicrosensor
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Fine Grain Shut Down ControlFine Grain Shut Down Control
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OSOS--Controlled Power Down ModesControlled Power Down Modes
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Dynamic Voltage ScalingDynamic Voltage Scaling
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Leakage : Low Duty Cycle ConcernLeakage : Low Duty Cycle Concern
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Power Aware RadioPower Aware Radio
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RF StartRF Start--up Energy Overheadup Energy Overhead
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Next Generation Sensor NodesNext Generation Sensor Nodes
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Energy Scavenging: VibrationEnergy Scavenging: Vibration--toto--Electric EnergyElectric Energy
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MEMS Generator Controller



Programmable Software FabricsProgrammable Software Fabrics
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Leakage Mitigation Using MTCMOS
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Leakage Reduction Using MTCMOSLeakage Reduction Using MTCMOS
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Power Aware Architectures Power Aware Architectures 

Single butterfly architecture 
(4 multipliers, 6 adders)
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First Generation Power Aware FFT  First Generation Power Aware FFT  
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Energy Efficiency of Digital ComputationEnergy Efficiency of Digital Computation
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Adaptive VAdaptive VDDDD/V/VTT ArchitectureArchitecture
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New Energy Metrics in DSM InterconnectNew Energy Metrics in DSM Interconnect
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Computation vs. CommunicationComputation vs. Communication
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Fast Startup TransmitterFast Startup Transmitter
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New Opportunities: “Digital”  UWB RadioNew Opportunities: “Digital”  UWB Radio
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MultihopMultihop and the Characteristic Distanceand the Characteristic Distance
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MultiMulti--Hop Routing AnalysisHop Routing Analysis

Take advantage of dense sensor 
networks by using several shorter 
hops to transmit long distances
Plot of total power used to transmit 
a given distance for 1, 2, 3, and 4 
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Large power step in each trace from 
turning on external PA
Trace out lowest curve for energy 
efficiency (i.e. use 3 hops @ 1000 m)

Multi-hop routing is more energy 
efficient for this particular radio
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Adds latency to the network
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API and Middleware LayerAPI and Middleware Layer
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APIAPI--Controlled Operational Policy Controlled Operational Policy 
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ConclusionsConclusions

Exciting new applications enabled by a network of low-
power wireless sensing devices
Power Aware Design Methodology supersedes Energy 
Efficient Design
Slower is Better – exploit sub-threshold operation as 
fastest switching speed is not needed
Communication-centric design

Energy per operation (mW/MIPS) will scale with technology
Communication costs (nJ/bit) will not scale at the same rate

Low Energy Sensor Design Requires a SystemLow Energy Sensor Design Requires a System--level level 
Approach Approach –– Tight Coupling Between Fabrics, Tight Coupling Between Fabrics, 

Algorithms and ProtocolsAlgorithms and Protocols
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