A 47pJ/pulse 3.1-to-5GHz All-Digital UWB Transmitter in 90nm CMOS

David D. Wentzloff and Anantha P. Chandrakasan

Massachusetts Institute of Technology Cambridge, MA

ISSCC 2007

Motivation

• Low-data rate, energy-constrained apps.

Pulsed-UWB signaling inherently duty-cycled

System Specifications

• PPM signaling with non-coherent receiver

• Three channel frequency plan

Pulse Generation Principle

• Use a tapped variable delay line and edge combiner to synthesize a pulse

Spectrum cSarbmlgin

Spectrum cSarbmlgin

Transmitter Block Diagram

Digital Delay Stage

Delay Line Calibration

Delay Range and Accuracy

Simulated RF Output

Delay Range and Accuracy

Measured RF Output

Ring output is an accurate measure of pulse center frequency

30-Edge Combiner

RF Pad Driver

DB-BPSK Implementation

Per-stage delay is 1/2 RF period

Mask values offset by 1 bit

FCC Mask

4.4

4.3

4 2

DB-BPSK Pulses PPM + DB-BPSK Spectrum 25 [ZHW/wgp] QSd 2.5ns PPN 650mV **DB-BPSK** PPM -65

3.7

3.8

3.9

4 0

Frequency [GHz]

Measured Spectrum

Summary

Technology	90nm CMOS	
Active Area	0.2x0.4mm ²	
Modulation	PPM	
Scrambling	DB-BPSK	
Supply	1V	
Leakage Power	96µW	
Active E/pulse	37pJ/pulse	
PRF Range	10kHz to 16.7MHz	
Total E/bit	9.6nJ/bit to 43pJ/bit	

- Energy consumed in sub-V_t leakage and CV²
- Digital architecture practical for non-coherent RX

Acknowledgements – MARCO/DARPA Focus Center for Circuit & System Solutions (C2S2), National Science Foundation (NSF), and STMicroelectronics for chip fabrication