

## IR-UWB Transmitters Synthesized from Standard Digital Library Components

Youngmin Park and David D. Wentzloff University of Michigan Ann Arbor, MI, USA

ISCAS 2010

#### **Motivation**

- Digital circuits take more advantages of process scaling
- Digitally-assisted / digitally-intensive circuits replace conventional analog circuits
- IR-UWB communication is ideal for all-digital transmitter architectures
- UWB Transmitter with fully automated design flow

## **UWB Pulses & Modulation**

#### IR-UWB signaling inherently duty-cycled



Digital circuits can be off between pulses, minimizing power consumption

PPM signaling with non-coherent receiver



## **Tunable Delay Cell**

#### Delay tuned by digital code

- Implemented with digital logic cells
- Tuning range and resolution determine by number of buffers



**Digital building block for analog function** 

## **Delay Line Pulse Generator**

- Combine delayed edges to generate pulse
  - Center frequency controlled by delay cells
  - Pulse width controlled by selecting edges



#### **Ring Pulse Generator**

- Ring structured pulse generator
  - Center frequency controlled by delay cell and MUX
  - Pulse width controlled by counting cycles



#### **Transmitter Block Diagram**

- Build transmitters with proposed pulse generators
  - System controller, modulator also digital logic blocks



#### **Synthesizable Transmitter**

#### **Synthesizable Transmitter**

- Take advantage of current automatic design tools
  - Portability and Scalability
  - Benefits from process scaling



#### **Synthesizable Transmitter**

#### UWB transmitters in FPGA



### **FPGA Prototype**

- Automated FPGA design flow
  - Mapped to configurable logic blocks and TBUF cells



Xilinx Virtex-II Pro FPGA Development board

# Verification of synthesizable transmitter

## **Calibration of Pulse Generator**

#### Ring pulse generator

Coarse / fine calibration to obtain large range



# Automatic PAR requires calibration

#### **Measured Pulse & Spectrum**

Delay line pulse generator in FPGA prototype



**Satisfies FCC fractional requirement** 

#### **Measured Pulse & Spectrum**

Ring pulse generator in FPGA prototype



**Satisfies FCC fractional requirement** 

#### **Transmitter in ASIC**

UWB transmitter prototype in ASIC



#### **Pulse Generator in ASIC**

- Tunable delay cells applied to DCO and delay line
  - Center frequency controlled by DCO
  - Pulse width controlled by delay line



# Gate DCO output with pulse control edge DCO is turned off after gating output



#### Gate DCO output with pulse control edge

DCO is turned off after gating output



- Gate DCO output with pulse control edge
- DCO is turned off after gating output





- Gate DCO output with pulse control edge
- DCO is turned off after gating output





- Gate DCO output with pulse control edge
- DCO is turned off after gating output





- Gate DCO output with pulse control edge
- DCO is turned off after gating output





#### **Automatic Place-and-Route**

- All functional blocks implemented with standard cells
  - Area : 0.0375 mm<sup>2</sup> Simplified design flow, higher integration Transmitter 0.15mm

#### **Measured Pulse and Spectrum**

Pulse generator in 65nm ASIC



## **Calibration of Pulse Width**

- Calibrate bandwidth over variations or target different applications
  - **57** tunable delay cells, 4 tri-state buffers in each cell



#### **Measured Pulse Width Control**



4/8/20 ps resolution

Leverages high performance standard cells

#### Conclusions

- All-digital UWB Transmitters implemented with digital logic cells
- Prototypes in FPGA and ASIC verify the functionality
- ASIC UWB Transmitter performance

|                        | This work             | Wentzloff<br>ISSCC 07 |
|------------------------|-----------------------|-----------------------|
| Process                | 65nm CMOS             | 90nm CMOS             |
| Die Area               | 0.0375mm <sup>2</sup> | 0.08mm <sup>2</sup>   |
| Modulation             | РРМ                   | РРМ                   |
| PRF                    | 16.7MHz               | 16.7MHz               |
| Pulse Width            | 1.1-3.1ns             | -                     |
| Active<br>Energy/pulse | 90pJ/pulse            | 43pJ/pulse            |