Direct Conversion Pulsed UWB Transceiver Architecture

an and a second se

Raul Blazquez, Fred Lee, David Wentzloff, Brian Ginsburg, Johnna Powell, Anantha P. Chandrakasan

Massachusetts Institute of Technology

Outline

- Introduction
- Baseband Transceiver
- Direct Conversion Transceiver
- Conclussions

Initial Interpretation of UWB

- High data rate.
- Low probability of interception.
- Excellent multipath resolution
- Low interference to preexisting services.
- Simplicity of implementation (low power, largely digital).

Regulation Issues

USA 7.5GHz of free unlicensed spectrum Europe Unregulated

Future UWB Standards

IEEE 802.15.3a

- QoS
- High Data-Rate
- 4 PicoNet in close proximity
- Cost

Distance	Bit Rate
10m	110Mbps
4m	200Mbps
1m	480Mbps

<u>IEEE 802.15.4a</u>

- High Precision Location Capability
- Larger Range
- Robust multipath performance
- Scalable Data Rate

Applications

- Safety (Public/Military)
- Smart Buildings
- Item Locating/Tracking
- Networking

UWB Baseband Transceiver

BW = 300MHz, **Duty cycle = 2%**, **31 pulses per bit**

Front-end

Specification of the ADC

Noise Limited Case

Interference Limited Case

4 bits sufficient for reliable UWB detection

ADC Architecture

ADC (Measurements)

ADC Channel 1			
f_{CLK}/MHz	DNL _{ave} / LSB	INL _{ave} / LSB	
250	0.31	0.62	
384	0.31	0.62	

Dornberg, J., Lee, H.S. and Hodges, D.A., "Full-Speed Testing of A/D Converters", IEEE JSSC, Dec 1984.

Clock Generation Subsystem

Digital Backend Specification

Whole synchronization in digital domain. Coarse Acquisition < 70µs, Fine Tracking Precision = 1sample

Coarse Acquisition

Wider integration window? 2 samples per pulse N_c pulses per bit Case 1: 1window \Rightarrow Width N 2N_cN multiplications 2N_cN-1 additions Case 2: N windows \Rightarrow Width 1 2N_cN multiplications 2N_cN-N additions

PARALLELIZATION

Correlators

UWB System on a Chip

1.8 V - 0.18µm non-epi Demonstrated 193kbps wireless link

The UWB Channel

- $BW_{min} = 500 MHz$
- Limitations:
 - In band interferers.(802.11a)
 - > Multipath.

	Description	RMS Delay
CM1	LOS 0-4m	5.3ns
CM2	NLOS 0-4m	8.0ns
CM3	NLOS 4-10m	14.3ns
CM4	Extreme NLOS	25ns

Two Proposals for 802.15.3a

ADC Impact in UWB Signals

Pulsed UWB

MB-OFDM

R. Blazquez, F. S. Lee, D. D. Wentzloff, P. P. Newaskar, J. D. Powell, A. P. Chandrakasan, "Digital architecture for an ultra-wideband radio receiver", VTC Fall 2003, Orlando FA, October 2003.

Direct Conversion Receiver

Power Budget for a UWB Transceiver

• MB-OFDM :

- Front-end: 117.5 mW (Bergervoet et al. ISSCC'05) (SiGe BiCMOS 0.25)
- Clock and carrier generation: 73.44 mW (Leenaerts et al. ISSCC'05) (SiGe BiCMOS 0.25)
- ➤ Digital Back-end: 523 mW (Liu et al. ISSCC'05) (CMOS 0.18)
- Estimated for 90nm CMOS (MBOA White paper): 93mW in transmission, 169mW in reception
- Pulse UWB (DSSS)

➤ Total: 280mW (Iida et al. ISSCC'05) (CMOS 0.18)

Discrete Prototype

Antenna

- VSWR < 2 for 3.1- 10.6 GHz</p>
- Near Omnidirectional Pattern
- High Radiation Efficiency
- Physically Small Size
- Short impulse response

Lincoln Laboratory Measured Azimuth Pattern

Johnna Powell, Anantha P. Chandrakasan, "Differential and Single Ended Elliptical Antennas for 3.1-10.6 GHz UWB Communication", IEEE Antennas and Propagation Society International Symposium, June 2004.

RF Front-end

Programmable Baseband

Parallellization

Rake Receiver

Channel Impulse Response (with multipath effects)

Method implemented

Variable number of fingers based on relative amplitude of response.

Adapting to the Channel

- Digital baseband estimates channel properties:
 - ➢ Interference (ISR)
 - Multipath (Impulse Response)
 - Signal power
- Controls over signal processing:
 - > Number of states of equalizer.
 - ➢ Number of bits of ADC.
 - \succ Threshold of the channel.

NUMBER OF STATES OF MLSE EQ.

KNOBS AVAILABLE TO ADAPT THE COMPLEXITY TO THE CHANNEL QUALITY

- SoC implementation is difficult.
- Higher data rate implies complexity.
- Parallellization allows power reduction.
- Adapt the complexity of the transceiver to channel quality.