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Abstract—Non-coherent UWB receivers are often implemented 

using energy detection architectures which are very sensitive to 

noise in the channel and interference. Therefore, the receiver 

bandwidth plays an important role since the total noise and 

interference energy is proportional to this bandwidth. This work 

provides analytical expressions to find the optimal receiver 

bandwidth and quantifying the effect on the bit-error-rate (BER) 

due to channel noise and adjacent-channel interference (ACI). A 

reduction in receiver bandwidth beyond the optimal point is 

shown to have minimal impact on BER performance when ACI is 

negligible. 
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I.  INTRODUCTION 

Pulse-based digital communications, such as pulse position 
modulation (PPM), are commonly used to implement low 
power UWB impulse radios. These radios can be realized 
using coherent or non-coherent architectures. For instance, in 
terms of data rate and bit-error-rate (BER), coherent receivers 
perform better than non-coherent [1][2]. However, non-
coherent receivers offer simpler architecture and lower power 
compared to coherent receivers [1]. Therefore, non-coherent 
architectures are attractive solutions for low cost, low 
complexity, and very low power applications [3-6]. 

Non-coherent receivers are typically implemented using 
architectures based on energy detection (ED) [7-12]. Figure 1 
shows the generic ED architecture. As shown, after channel 
selection and amplification, the transmitted signal is squared 
and integrated in order to measure its energy. Bit slicing is 
then carried out by comparing energies in two time windows 
or integration windows. Due to this principle of energy 
comparison, ED receivers are very sensitive to noise in the 
channel (i.e. an increase in noise energy increases the 
probability of bit-error). Assuming an additive white Gaussian 
noise (AWGN) channel, the noise energy varies proportionally 
to the size of the integration window and the filter bandwidth 
due to its flat power spectrum. Hence, the band-pass filter 
(BPF) as well as the integration window plays an important 
role in the receiver performance.  

According to the amendment of IEEE P802.15.4a [13], at 
the maximum radiation frequency, the 10dB-bandwidth of an 
UWB signal must be at least 500MHz. Based on this 
definition, it is common to design UWB systems where the 
bandwidths for receiver and transmitter circuits are chosen to 

be equal to the 10dB-bandwidth of the transmitted signal 
[2][6-8][14]. However, using a receiver bandwidth that is 
smaller than the pulsed signal bandwidth (i.e. using a BPF 
with pass-band smaller than the signal bandwidth) relaxes the 
specifications on the receiver circuits (e.g. LNA bandwidth, 
ADC sample rate) while reducing the integration of noise 
energy.  

 

 

There is related-work regarding optimal bandwidth for ED 
receivers. In [17], the well-known BER equation for a 2-PPM 
ED receiver is used in two cases of study to graphically show 
that there exists an optimal receiver bandwidth for different 
input signal-to-noise ratio (SNR). In this work, we derive a 
general equation that is independent of SNR and from which 
the optimal receiver bandwidth can be calculated as a function 
of the signal’s 10dB-bandwidth, the integration time, and the 
desired BER. In addition, the effect of adjacent-channel 
interference (ACI) is included in the analysis. 

II. BACKGROUND 

This section is divided in two parts. The first part shows 
the BER expression for energy-detection (ED) receivers using 
PPM modulation. The second part focuses on the effect of 
BPF bandwidth reduction. 

A. Probability of Bit-Error 

The probability of bit-error for a non-coherent PPM 
receiver based on energy detection and sampled at the Nyquist 
frequency is given by [15] [18] 

     (
    ⁄

√                ⁄
) (1) 

where  ( ) is the Q-function,    is the energy per bit,    is 
the noise spectral density,    is the time of integration, and    
is the receiver bandwidth.  Equation (1) is derived using the 
central-limit theorem to approximate the random variables that 
represent the squared signal as Gaussian random variables. In 
order for this approximation to be valid            [18].  

Fig 1. Non-coherent ED Receiver Architecture 
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B. Effect of Receiver Bandwidth Reduction 

In the introduction we motivated the importance of the 
BPF based on the fact that ED architectures are very sensitive 
to noise in the channel. Thus, the impact of noise on BER 
performance can be reduced by maximizing the signal-to-
noise ratio (SNR). This can be inferred from (1) since 
    ⁄      . By carefully choosing the BPF bandwidth, we 
can maximize the SNR which is given now by 

    
       

       
  

  

  
(
        ⁄

        ⁄
) (2) 

where, as shown in figure 2,     and     are the reduction in 
signal and noise powers, respectively, and    and    are the 
nominal signal and noise powers when the receiver bandwidth 
is equal to the 10dB-bandwidth of the transmitted signal.  

 

 
As BPF bandwidth is decreased from the 10dB-bandwidth, 

the numerator of (2) decreases at a slower rate than the 
denominator (i.e.      ⁄  <      ⁄ ). Hence, SNR increases 
until      ⁄  is no longer smaller than      ⁄ . The maximum 
value for SNR is achieved when the rate of change of      ⁄  
and      ⁄  is equal. This can be graphically seen in figure 3. 
Both signal and noise power increase as frequency increases; 
however,             ⁄⁄  remains true until the slope (i.e. 
rate of change) of the signal power is equal to the slope of the 
noise energy (i.e.            ⁄⁄ ). At this point, SNR is 
maximized.  

 

 

III. MODIFIED PROBABILITY OF BIT-ERROR AND OPTIMAL 

RECEIVER BANDWIDTH 

In this section, (1) is modified to include the effect of 
reducing the BPF bandwidth. For convenience and comparison 
purposes, the receiver bandwidth is normalized to the 
commonly used 10dB-bandwidth (i.e.      ⁄  where    is 

the BPF bandwidth and   is the 10dB-bandwidth of the signal). 
Furthermore, square pulses are used as the transmitted signal 
because they are commonly used due to the simplicity to 
generate them. Nevertheless, the results are similar for other 
pulse shapes such as Gaussian since the power spectral density 
(PSD) of a Gaussian pulse is comparable to that of a square 
pulse inside the 10dB-bandwidth (less than 3% of power 
difference) as shown in figure 2. 

A. Probability of Bit-Error and Receiver Bandwidth 

The Fourier transform of a square pulse with time width    
is given by the sinc function 

   
( )     

   (    )

    
 (3) 

Recall that the energy spectral density (ESD) is given by 

  ( )   |   
( )|

 
. Then, integrating   ( ) over a range of 

frequencies gives the total energy of the signal over that range. 
Thus, the pulse energy for a filter bandwidth    is 
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where   ( )   ∫    ( )  ⁄    
 

 
.  

As mentioned before, the receiver bandwidth is normalized 
to the signal bandwidth (i.e.      ⁄ ), which can be derived 
using the Taylor series of a sinc function and can be accurately 
approximated by           ⁄ . Hence, (5) becomes 

  ( )  
 [   (       )           (       )   ]

        
 (6) 

Reducing the receiver bandwidth decreases the signal 
energy    as explained in section II.B (see figure 3). 
Therefore, a bandwidth reduction results in a decreased SNR-
per-bit (i.e.     ⁄ ) since the noise spectral density is constant.  
Thus, an SNR-per-bit scaling factor  ( ) can be obtained by 
normalizing (6) to the signal energy of the full 10dB-
bandwidth, i.e.   (   ). Thus, the scaling factor is given by 

 ( )  
  ( )

  (   )
 (7) 

Incorporating  ( ) into (1) and substituting        
gives an expression for BER that depends on the normalized 
bandwidth  . Then, (1) can be rewritten as 

   ( )   (
 ( )  (    ⁄ )

√              ( )  (    ⁄ )
) (8) 

This expression predicts the BER of a receiver as a 
function of the normalized bandwidth      ⁄  for a specific 
value of      . However, we are often more interested in the 
required       to meet a target BER; therefore, solving (8) for 
    ⁄  gives the required SNR-per-bit 

      ( )  (
  

  
)   

  

 ( )
(   √   

         

  ) (9) 

Fig 2. Power spectral densities of a square pulse, Gaussian pulse, and AWGN 

 

Fig 3. Signal and noise power profile. 

 

1701



 

 

where    is the integration time and      (   ). Equation 
(9) can be used to obtain an optimal bandwidth as will be 
shown next. 

B. Optimal Receiver Bandwidth 

The optimal receiver bandwidth is the value that minimizes 
      ( ). To find this optimal value, a local minimum must 
be found for (9). Thus, the optimal values are given by 

          {
 

  
[      ( )]     } (10) 

Equation (10) cannot be solved explicitly mainly due to the 
complexity of the scaling factors  ( ). Thus, to obtain a 

solution for     , approximations for √  (      ⁄ )    and 

 ( ) are used.  For mathematical simplicity, a non-linear least-
square regression is used with the exponential fit  

             (       ) (11) 

where   is the regression parameter (i.e. the independent 
variable),   ,   ,   ,    are constants, and       identifies the 

desired approximation (    for √     and     for  ( )). 
The values for the constants are shown in table I. Now, using 
(11) to estimate (9) gives this approximation 

      ( )     
          (         )

        (       )
 (12) 

where           ⁄ . Equation (12) can be used to solve 
(10). Taking its derivative and then solving for   gives the 
optimal normalized bandwidth      which can be 

approximated by  

        
  (   ⁄ )

       
 (13) 

The constants in (13) are summarized in table II for 3 different 
ranges of   and a maximum error of less than 1%. 

TABLE I.  CONSTANT VALUES FOR EQUATION (11) 

i Parameter 
Regression 
parameter 

            

1 √    

       4.82 -0.66 1.73 -0.089 

        10.78 -1.35 1.89 -0.018 

         22.9 -11.77 0.49 -0.004 

2  ( ) 0       1.138 -0.10 2.60 -2.35 

 

TABLE II.  CONSTANT VALUES FOR EQUATION (13) 

Range             

       0.775 67.5 17.1 1.355 

        0.766 50.0 19.5 0.350 

         0.742 120.0 33.0 0.100 

IV. ADJACENT-CHANNEL INTERFERENCE 

The analysis in this section assumes square pulses as the 
interference signal.  The idea behind this analysis is to gain a 

better understanding on how the filter bandwidth changes the 
BER performance of a PPM receiver in the presence of other 
transmitters with similar signals in different channels. 

A. Effect of Adjacent-Channel Interference on the Receiver 

Performance 

In the last years, several papers related to UWB 
interference have been published and among them are [19]-
[23].  Different approaches to model in-band UWB 
interference can be found in literature.  However, many of 
them agree in a Gaussian approximation model [21]-[23].  
Consequently, here adjacent-channel interference (ACI) is 
treated as AWGN and modeled with a flat power spectrum. 

  

 
Figure 4 shows the spectrum of the signal with adjacent-

channel interference, the BPF impulse response, and the 
interference spectral density   . The shaded region represents 
the interference energy. To calculate this energy, (6) can be 
used with different integration limits. Then,  

  (     )   ∫ |  

   (    )

(    )
|

 

  
     

  
 

      
  
 

  (14) 

where    is the frequency space between the transmitted and 
the interference signal (i.e. channel spacing) and    is the BPF 
bandwidth (see figure 4). Again, for convenience,    and    
are normalized to the 10dB-bandwidth of the signal (i.e. 
       ⁄         ⁄ ). Then, by solving (14), the ACI energy 
can be expressed as 

  (   )   

 
[
   (   )

  
 

   (   )
  

   [  (   )    (   )]    
  

    
 ]

   
 

(15) 

where         ,    (    ), and    (    ). Now, 
recall the assumption of flat power spectrum for ACI. Then, 
the interference spectral density is given by         ⁄ , where 
   is the interference average power.  The interference average 
power due to a single 1-sided adjacent interferer can be 
approximated by      

 (   ) (    )⁄ . Therefore, the spectral 
density of multiple 2-sided adjacent interferers is 

  (   )   
 

      
 ∑

  (     )

  

 

   

 (16) 

where   is the total number of 2-sided interferers in the 
channel (e.g.     in figure 4) and      ( )   (   )⁄  is the 
signal-to-interference ratio (SIR) of the     2-sided interferer, 

Fig 4. Frequency spectrum of the transmitted signal with ACI 
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i.e. the received-power ratio of the transmitted signal and the 
    2-sided interference signal (e.g.                if all 
transmitters in a wireless network are at the same distance 
from the receiver and they all use the same transmission 
power). 

To account for ACI, an effective SNR-per-bit, (     )   , 

can be used in (1). Since the interference is modeled by a 
Gaussian approximation as motivated earlier, the effective 
SNR-per-bit can be expressed as  (     )       (     ) 

which is often called the signal-to-interference-and-noise ratio 
(SINR).  Here,      (     )⁄ ,       (   ), and    
  (   ). Thus, 

(
  

  
)
   

 *
 

(    ⁄ )
 

  (   )

  ( )
+

  

 (17) 

By substituting       for  (     )    in the equations 

derived in section II.A, the effect of ACI can be taken into 
account. Hence, (8) can be written as  

   (   )   (
(    ⁄ )   

√             (    ⁄ )   

) (18) 

Solving (18) for       gives the required SNR-per-bit as a 
function of the receiver bandwidth ( )  

      (   )  

[
 
 
 
 

 ( )

   (   √   
         

  )

  
 

        (   )

]
 
 
 
 
  

 (19) 

where       (   )    ( )   (   )⁄ . 

B. An Approximation for the Optimal Receiver Bandwidth 

 Equation (19) can only be solved numerically due to its 
complexity. However, by following the approach on section IV 
and making some assumptions, an expression for       can be 

obtained.  In this case, let’s assume the following:  

1) Only the first 2-sided ACI is significant (i.e.    )  

and it has a unitary SIR (i.e.     ). 

2) Using the exponential fit used in section IV,   (   )  
    [   (            )     (             )] . 

3) The ACI signal has the same bandwidth as the 

transmitted signal. 
For these assumptions, the optimal bandwidth can be 

calculated by solving (10) using the expression for 
      (   ) given in (19). This yields the following 
approximation 

        
  (   ⁄ )  (   ⁄ )    (   ⁄ ) 

       
 (20) 

where   ,   ,   ,    are given in table II,        ,          

and        . Recall that           ⁄ . 

V. SIMULATION SETUP 

To support and corroborate the theory developed, a simulator 
for a non-coherent PPM receiver based on energy detection 
was built in MATLAB. Figure 5 shows the overall simulator 
diagram. It has three major parts: modulation, channel 
modeling, demodulation. 

 

A. Modulation 

The simulator randomly generates a stream of binary bits.  
These are then modulated and up-converted by the 
“Modulation” block using a PPM scheme with square pulses.  

B. Channel Modeling 

To simulate the wireless channel, additive white Gaussian 
noise (AWGN) and adjacent-channel interferers (ACIs) are 
added to the transmitted signal.   

1) Noise: Since     ⁄  is specified, then    can be 

calculated if the energy per bit,   , is known. The energy per 

bit can be calculated by squaring and integrating the 

modulated signal for one bit. Thus,  

where  ( ) is the     sample value of the received signal, 
          and   is the number of samples in the transmitted 
signal.  The one-sided noise power can be calculated as 

   
  

 
    

  
        

∑  ( )

 

 (22) 

Then the noise signal  ( ) is done by generating   random 
values that are normally-distributed with zero-mean and 

standard deviation   √  . 

2) Adjacent-Channel Interference (ACI): A To generate 

ACI, another random stream of bits is modulated and up-

converted. The SIR value (defined as   in section V.A) is 

  [∑  ( )

 

] [∑  ( )

 

]⁄  (23) 

where  ( ) is the received signal and   ( ) is the ACI signal. 
Based on (23), the pulse amplitude | ( )| for the ACI signal 
can be calculated using |  ( )| as 

| ( )|  
|  ( )|

√     
 (24) 

where in the simulator |  ( )|    for simplicity. Thus, 
| ( )|   √     ⁄ . 

3) Demodulation: After the channel modeling, the 

demodulation part simulates the signal processing at the 

receiver. It filters the signal with the specified receiver 

bandwidth, squares it, and integrates it over periods of times 

   
  

(    ⁄ )
 

 

      
∑  ( )

 

 (21) 

Fig 5. Block diagram of the MATLAB simulator 
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equal to   . Each pair of integration windows is then compared 

and a bit decision is made (i.e. 0 or 1) 

∑  
 ( )

 

  
       

 
       

   ∑  
 ( )

 

 (25) 

where   ( ) and   ( ) are the signals in integration window 1 
and 2, respectively. 

VI. SIMULATION RESULTS 

A. Simulation Setup validation 

To validate the simulator, several simulations were run to 
compare the results with the known equation for BER (1). 
Figure 6 shows the ideal and simulated BER curves for two 
values of signal bandwidth and an integration time of 30 ns. 
The simulated values closely agree with the ideal values. 
Hence, the simulator can accurately predict the BER for a non-
coherent PPM receiver and it will be used to corroborate the 
theory developed. 

 

 

B. Theory Corroboration 

The main equations of this work are (8) and (18) which are 
expressions to calculate the BER of a non-coherent PPM 
receiver as a function of receiver bandwidth. Equation (8) does 
not consider ACI while (18) does. The other important 
equations are (9), (13), (19), and (20). These are just algebraic 
manipulations of (8) and (18). Thus, to corroborate the theory 
developed, it is sufficient to verify that (8) and (18) hold. 
Figure 7 shows a plot of BER for the ideal values obtained 
using (8) and the results from the simulation.  It can be seen 
that (8) yields values that are very close to those simulated and, 
therefore, it holds. Similarly, figure 8 corroborate (18).  

C. Analysis 

Frequently, designers in wireless communications use link 
budgets when implementing wireless radios. An important 
parameter for the link budget is the       required to obtain a 
desired BER. This value can be calculated with equations (9) 
and (19) as a function of receiver bandwidth, desired BER and, 
in the case of (19), interference frequency. Figure 9 shows the 
required       as a function of the normalized receiver 
bandwidth to achieve a BER of     . Note that the lowest 
value of       corresponds to the optimal receiver bandwidth. 
However, a smaller receiver bandwidth can provide hardware 
advantages (e.g. lower sampling rate, lower power 
consumption) at a minimal cost in the required      . For 
instance, for a 1GHz signal, the receiver bandwidth could be 
reduced by half (i.e.      ) with a minimal loss in       of 

less than 1dB. If the system can tolerate this degradation, the 
benefits for the system will be significant (e.g. smaller 
sampling rate, lower power consumption, better input 
matching).  

 

 

 

 

 

 

From the same plot (figure 9), it is clear that this optimal 
value is a function of the signal bandwidth. Equation (13) is an 
accurate approximation for the optimal normalized receiver 
bandwidth. It is plotted in figure 10. Note that having a larger 
signal bandwidth increases the savings in receiver bandwidth. 
In other words, the optimal receiver bandwidth becomes 
smaller with respect to the signal bandwidth (recall   
                    ⁄ ) as the latter increases. 

An example of the optimal receiver bandwidth when ACI 
is considered is also plotted in figure 10. Note that it follows a 
similar tendency as the curve for no ACI. However, it is 
shifted up. This is to be expected since the interference is 
effectively increasing the noise. Thus, a larger receiver 
bandwidth will integrate more signal energy to compensate for 
the added interference. However, the receiver performs worse 

Fig 6. Bit-error rate (BER) versus SNR for two values of signal bandwidth. 

 

 

Fig 7. Bit-error rate (BER) versus SNR for two values of signal 

bandwidth with      (no ACI) 

 

 

Fig 8. BER versus SNR including ACI  with       and     

 

 

Fig 9. Required        for          versus receiver bandwidth 
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(i.e. required       increases) as the interference increases. 

 

 

 

 

VII. CONCLUSION 

In this work, we derived equations that describe the 
performance of a non-coherent PPM. The theory developed 
here could be very useful when designing non-coherent UWB-
PPM systems because it lets the designer choose easily an 
appropriate filter bandwidth based on the system parameters. 
Table III summarizes the key equations presented.  

Future work will include the effect of multipath fading 
which causes the signal energy to be spread in time. Hence, the 
integration window becomes an important parameter for 
system performance. Smaller windows detect less signal 
energy and increase inter-symbol interference while larger 
windows integrate more noise. Therefore, there is an optimal 
integration time that minimizes the bit-error rate. In addition to 
multipath fading, alternate pulse shapes can be included in the 
analysis. Recalculating (7) with the equation that describes the 
desired pulse shape yield a new  ( ). This can be used to derive 
new equations. 

TABLE III.  SUMMARY OF KEY EQUATIONS 

Description Equation 

Required 

            
(No ACI) 

      ( )  (
  

  
)   

  

 ( )
(   √   

         

  
) 

     (No ACI)         
  (   ⁄ )

       
 

Required 
             

(w/ ACI) 
      (   )  

[
 
 
 
 

 ( )

   (   √   
         

  )

  
 

        (   )

]
 
 
 
 
  

 

     (w/ ACI)         
  (   ⁄ )  (   ⁄ )    (   ⁄ ) 
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