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Abstract— This paper, split into Parts I and II, reviews recent
innovations in circuit design that have accelerated the miniatur-
ization of sensor nodes. Design techniques for key building blocks,
such as sensor interfaces, timing reference, data communication,
energy harvesting, and power management are reviewed. In par-
ticular, Part I introduces analog circuit techniques and sensor
interfaces for miniaturized sensor nodes. The energy budget of
such system is highly restricted due to the small battery volume.
Therefore, ultra-low power design techniques are critical enablers
and are reviewed. Design techniques for compact monolithic
integration are also discussed.

Index Terms— Internet of Things, IoT, sensor node, ultra-low
power, wireless sensor node, GNSS.

I. INTRODUCTION

M INIATURIZATION and interactive communication are
the two main topics that dominate the recent research

in the internet-of-things (IoT) [1]–[11]. The high demand
for continuous monitoring of environmental and bio-medical
information has accelerated sensor technologies as well as
circuit innovations. Simultaneously, the advances in commu-
nication methods and the wide spread use of cellular and
local data links enable the networking of sensor nodes. This
potential improvement in machine service for humans could
trigger the commercial development of a sensor node with
platforms that collect, process and transmit widely spread
environmental and bio-medical data.

In the history of computing platforms, from mainframes in
the 1950s to workstations in the 1960s, personal computers in
the 1980s, laptops in the 1990s and now the current smart
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phones, one of the most evident trends is the increasing
convenience and frequency of access by humans who utilize
the computing platform. Miniaturization of the computer is
an important factor in this trend, lowering cost, reducing the
required space and providing mobility. However, the need for
physical access with an interfacing component like a screen,
buttons or a touch surface limits its form factor and therefore
inhibits further miniaturization.

On the other hand, the next generation of computing plat-
forms, which is the IoT, increases proximity to the source of
the information rather than to humans, allowing much more
aggressive miniaturization.

The key technology of miniaturization has been process
scaling, which has reduced the silicon area, increased compu-
tational capability and lowered power consumption. However,
leakage current of a device has continuously increased with
the process scaling so that the latest deep-submicron tech-
nologies do not fit well on the mm-scale computing platforms
that demand nano-watt levels of sleeping power. Therefore,
advances in circuit level techniques are critical to realize
networks of mm-scale IoT computing platforms.

Furthermore, a miniaturized form factor incurs a severely
restricted energy budget [12], [13]. For instance the 0.92-mm3

Li thin-film battery introduced in [14] provides nearly 1/106th
the energy capacity of an alkaline AA battery. Therefore,
the transition of the circuit design regime from milli-watt to
nano-watt level is critical.

This paper, split into Parts I and II [1], reviews recent
advances in circuit techniques in the implementation of the
key building blocks for miniaturized sensor nodes. Part I of
this work includes design challenges associated with sensor
front-end circuits. In section II, circuit techniques for analog
references and amplifiers are introduced. Section III includes
system level discussions on capacitive sensor interfaces and
bio-medical applications. As one of the key elements for
saving sleep power of a miniaturized sensor node, ultra-low
power timing references are reviewed in section IV. Part II of
this work includes design challenges in data transceiver, energy
harvester, power management unit and digital logic gates.
Finally, Part II proposes a miniaturized (2.7 cm3) global
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Fig. 1. (a) A sample-and-hold bandgap circuit proposed in [18].
(b) Schematic of a sample-and-hold switch.

navigation satellite system (GNSS) logger as a proto-type
design example.

II. ANALOG CIRCUIT TECHNIQUES

Due to the inherent energy constraints of wireless sensor
nodes, reducing the power consumption of the main building
blocks that make up such systems is critical. Efficient power
management circuits, low-power energy harvesting circuits
and communication protocols that minimize energy consump-
tion are emphasized.

The energy budget of a sensor interface is highly limited due
to the battery size, and most of the major building blocks need
to consume sub-nano to micro watt amounts of power [2]–[4],
[9], [15]–[17]. Thus innovative circuit techniques are required
to reduce the power consumption of these mW-circuit designs
by more than 106times. In this section, useful circuit design
techniques aimed at improving voltage reference, current ref-
erence and amplifier DC biasing are reviewed.

A. Voltage Reference

An accurate voltage reference that is insensitive to process,
voltage and temperature (PVT) variations is required in many
analog and mixed-mode circuits, such as those found in an
amplifier or an analog-to-digital converter (ADC). However,
conventional band-gap based voltage references consume more
than 100 nW, making integration into an ultra-low power
sensor node system difficult.

The sample-and-hold bandgap proposed in [18] can be
a good solution to such problems. As shown in Fig. 1(a),
the voltages of the bandgap reference are simply sampled at
C1–C5 and maintained by occasionally enabling the bandgap.
The bandgap is heavily duty-cycled so that the on-time of
the bandgap is only 0.003% of the off-time. The major factor
that determines the minimum duty-cycle is the leakage in
the sample-and-hold circuits. The leakage of a sample–and-
hold switch consists of the diode leakage of the source-to-
body junction and the transistor off-leakage from the source
to the drain. These two leakages are minimized by adopting
a low power amplifier that biases the drain and body voltages
to the source voltage when the sampling transistor is off as
shown in Fig. 1(b). The proposed work consumes 2.98 nW,
which is approximately a 250x reduction, while maintaining
the accuracy of the output voltage under temperature and
supply variations.

Fig. 2. A CMOS based voltage reference proposed in [19].

A CMOS-based voltage reference consuming less than
30 pW is proposed in [19]. This work uses two transistors
of different sizes, M1 and M2, with the sizes shown in Fig. 2.
The output voltage can be calculated by equalizing the current
of the two transistors. The subthreshold current of a MOSFET
can be calculated using the following equation:

Isub = μCox
W

L
(m − 1) V 2

T e
Vgs−Vth

mVT

(
1 − e

−Vds
VT

)
(1)

where μ, COX, W, L, VT, Vgs, Vds and Vth are the mobil-
ity, unit oxide capacitance, width of the transistor, length
of the transistor, thermal voltage, gate-to-source voltage,
drain-to-source voltage and threshold voltage, respectively.
The subthreshold slope factor, m, is expressed as 1+Cd/Cox
where Cd is the unit depletion capacitance. There exist other
sources of static current, such as the drain-induced barrier-
lowering (DIBL) current of M1 and source-to-body junc-
tion leakage currents. However, they are typically negligible
compared with the subthreshold current. Therefore, in this
paper, they are ignored to simplify the solution and provide
an intuitive understanding of the operation of the voltage
reference. Assuming that Vds is sufficiently greater than VT
so that exp(−Vds/VT) can be neglected, the currents though
M1 (I1) and M2 (I2) are as follows:

I1 = μ1Cox1
W1

L1
(m1 − 1) V 2

T e
−V th1−Vre f

m1VT (2)

I2 = μ2Cox2
W2

L2
(m2 − 1) V 2

T e
Vre f −V

th2
m2VT (3)

Equating (2) and (3) provides Vref as a function of the process
parameters as described by the following equation:
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Note that the output voltage, Vref , is dependent on the differ-
ence between the two threshold voltages and the ratio of the
device parameters, making it insensitive to process variation.
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Fig. 3. Conventional current references (a) constant-gm (b) resistor
regulation.

The optimal device size for minimizing the temperature coef-
ficient (TC) can be determined using the following equation:

dVref

dT
= 0 →

(
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W2

)
opt

= μ2Cox2 (m2 − 1) /L2
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e
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dVth1
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)
(5)

Note that (4) and (5) are slightly different and corrected
versions of equations (3) and (4) in [19].

B. Current Reference

The bias current of an amplifier determines its bandwidth.
If the bias current is lower than its target, the signal bandwidth
is reduced, causing gain attenuation at high frequency. On the
other hand, if the current is too large, the noise integration
range of the signal is increased unless an accurate filter
insensitive to PVT variation is added before the sampling.
If the amplifier noise is the dominant noise source, the thermal
noise reduction and the noise bandwidth increase cancel each
other out; thus, the output noise rarely depends on the bias
current. However, if the major noise source is the input of
the amplifier, an increase in the noise integration range causes
a lower signal-to-noise ratio at the output. Energy waste due
to the high bias current is another side effect of high bias
current. In addition, changing the pole locations can impair
the feedback stability of the amplifiers. Therefore, stable bias
current generation, insensitive to environmental change, is
required.

A current reference is usually implemented using a resistor.
Fig. 3 shows conventional methods used to generate a current
reference for a constant-gm and a current reference using
the combination of a voltage reference and a resistor. The
challenge of such an implementation in ultra-low power sensor
nodes is the size of the resistor. Due to power limitations, sen-
sor nodes demand a sub-nA current reference. Thus >100 M�
is required in order to implement such low current using
conventional approaches, which is highly impractical because
of the size of the resistor.

Reference [20] proposes a 20-pA resistor-less current ref-
erence circuit using a threshold voltage cancellation scheme.
A complementary to absolute temperature (CTAT) voltage
generator using a diode stack of transistors produces a gate
voltage of a subthreshold transistor and compensates for the
temperature dependence of the threshold voltage as shown
in Fig. 4. The supply voltage of the CTAT circuit is generated

Fig. 4. A resistor-less current reference proposed in [20].

Fig. 5. A switched capacitor based current reference generation.

with a 2T voltage [19], and its supply dependence is mini-
mized. The output stage is designed with a stack of NMOS
transistors to improve the load sensitivity of the output current.
The quiescent power consumption of this current reference is
23 pW, which is suitable for low power applications.

Nevertheless, the aforementioned technique relies on precise
coefficient matching between the CTAT generator and the
NMOS threshold voltage, which is difficult to achieve with-
out multi-temperature trimming. An ultra-low power current
reference replacing a resistor with a switched capacitor is
introduced in [21]. A voltage reference can be implemented
in sub-nW power consumption conditions [19]. If stable
frequency is available in the sensor node, a stable current
reference can be generated by regulating a switched capacitor
with a reference voltage as shown in Fig. 5; its output current
is CswVrefFsw. Note that the area occupied by the capacitor
is proportional to the output current, making it advantageous
for the generation a sub-nW current reference. The voltage
ripple generated by the switching operation of the capacitor
can be attenuated by the parallel capacitance, Cd, and is
further reduced by sampling the mirroring voltage, Vp, with
the switching clock or with R-C filtering using a pseudo-
resistor. Typically Cd needs to be at least 10 times larger
than Csw to sufficiently lower the voltage ripple caused by
the switching operation [21].

C. Resistance Boosting

Often a sensor node measures slowly varying signals, such
as voice, pressure or neural signals. Its analog front-end
demands time constants of a filter or amplifier that are an order
of magnitude larger than the signal changing rate in such cases.
A pseudo-resistor, introduced in [22], has been widely adopted
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Fig. 6. Use of pseudo-resistor in (a) noise filtering (b) ac coupling
(c) common mode feedback and (d) amplifier servo loop.

to generate very low frequency poles and zeros for low pass
filtering, ac coupling, common mode feedback and amplifier
biasing as shown in Fig. 6 [17], [23]–[26]. A pseudo-resistor
can provide a very large resistance with a series of turned-
off transistors that occupies only a few micro meter squares.
Despite the efficient use of area, the resistance is highly
dependent on environmental changes such as temperature
and process variations, which makes widespread use of this
approach difficult. For instance, in the amplifier biasing circuit
shown in Fig. 6(d), the small resistance of the pseudo-resistor
at high temperature increases the low cut-off frequency, which
may even reach the signal bandwidth thereby causing signal
attenuation. Furthermore, the current through the resistor is
not negligible in such cases, resulting in signal distortion
convoluted by the non-linearity of the pseudo-resistor. High
resistance also causes side effects such as an increased settling
time defined as the time constant of the pseudo-resistance
and the parallel capacitance. Sometimes, the resistance is
comparable to or even greater than the equivalent resistance
of gate and metal-insulator-metal (MIM) capacitors caused by
the leakage current due to tunneling, resulting in a shift of the
DC operating point.

Adaptive biasing on the gate voltages of the pseudo-
resistance has been proposed to improve the robustness of the
pseudo-resistance [26]–[28]. The gate voltages of the pseudo-
resistances are generated by a bias current combined with
a replica transistor to define the impedance of the pseudo-
resistor. In such approaches, however, the Vgs of the turn-off
transistor in the pseudo-resistor varies according to the output
voltage, and therefore the linearity becomes worse.

The duty-cycled resistor introduced in [29]–[31] is a viable
option for achieving an accurate and linear resistance. Assum-
ing that the switching frequency of a resistor is faster than the
frequency of interest, a resistance, usually implemented with
poly-silicon or N-well, is boosted by the factor of the duty
cycle. Reference [31] and [30] implemented stable 256 M�
and 20 G� for bias current generation and amplifier biasing,
respectively, using on-chip poly-resistors.

A switched capacitor can also provide a large impedance
with a small area [32], [33]. The resistance of a switched
capacitor is 1/CSWFSW, as discussed in Section II-B. There-
fore, a smaller capacitance and switching frequency, which
are advantageous to implement with a smaller area and low
power, offer greater resistance. Reference [33] demonstrates
a series-parallel charge-sharing technique during the capaci-
tance switching operation that further boosts the equivalence
resistance.

Fig. 7. A differential current reuse amplifier proposed in [44].

Fig. 8. A multi-chopper amplifier proposed in [25].

D. Amplifier
The minimum power consumption of an instrumentation

amplifier is limited either by the input referred noise or the
signal bandwidth, depending on the amplifier specification.
Most of the sensor node applications, such as monitor-
ing pressure [34], temperature [2], humidity [35], accelera-
tion [36] or bio signals [17], [22]–[24], [32], [37]–[41], involve
slowly varying signals of up to a few kHz; thus, the power
consumption is determined by the noise specification rather
than the bandwidth. Therefore, it is important to optimize the
noise efficiency factor (NEF) of the amplifier, which can be
expressed using the following equation [42]:

N E F = Vrms,in

√
2Itot

π · VT · 4kT · BW
(6)

where Vrms,in, Itot, VT, k, T and BW are the root-mean-
square of input referred noise voltage, total amplifier current,
thermal voltage, Boltzmann’s constant, temperature and noise
integration bandwidth, respectively. NEF indicates the amount
of current dissipation required to accomplish an input-referred
noise specification. As the noise spectral density at the input of
the transistor can be calculated by 4 kTγ /gm, the maximization
of the transconductance is critical. In this respect, an amplifier
using transistors in subthreshold mode is advantageous. The
transconductance, gm, of a transistor is dependent on Vgs in
strong inversion

Strong inversion: gm = 2IDS

Vgs − Vth
(7)

and is maximized when a transistor is in weak inversion [43]

Weak inversion: gm = IDS

mVT
(8)

Where m is 1 + Cd /Cox and Cd and Cox are depletion and
oxide capacitances, respectively.

A current reuse scheme that further improves the transcon-
ductance is proposed in [44], and a differential version [45]
is shown in Fig. 7. In this scheme, the input voltages are
connected to both nmos and pmos differential pairs whose
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Fig. 9. An incremental �� CDC proposed in [49]. (a) SAR mode (b) �� mode (c) detailed schematic (d) INL measurement with dynamic element matching
and common-centroid indexing.

current is shared, so that the devices are connected in parallel
from an input signal’s perspective. Since the transconductance
is increased to gmn + gmp while the current remains constant,
the input referred voltage noise can be reduced compared
to the single-input-pair implementation. This architecture has
been widely adopted in instrumentation amplifiers targeting
low NEF.

Reference [25] proposes a multi-chopper amplifier that
utilizes the excessive bandwidth to reduce the NEF. As noted
in the previous paragraph, the current of the amplifier is
sufficiently large to reduce the input referred noise, causing
excessive bandwidth at the output. This work mixes the input
signal to the unused bandwidth using f1 and f2 and then
reconstructs the signal at the output as shown in Fig. 8. This
work achieved the lowest NEF of 1.38.

III. SENSOR INTERFACES

A. Capacitive Sensor Interface

To implement an ultra-low power sensor node, it is impor-
tant to reduce the power consumption of the sensor itself.
Capacitive sensors are suitable in this respect because the
capacitive sensors do not consume static current [34]. Many
papers have been published utilizing low power capacitive
sensors to monitor parameters such as pressure [16], humid-
ity [35], acceleration [36] and displacement [46].

One of the key challenges of such capacitive sensors is
the dynamic range of the signal [35], [46]–[50]. The sensors
provide up to tens of pF of base capacitance but require
aF accuracy to precisely read out the information. Therefore,
the delta-sigma modulation method is advantageous for high
accuracy applications [35], [46]. However such an approach
requires relatively high power consumption. Fig. 9 shows
a recently published incremental �� CDC with zoom-
in 9 bit asynchronous successive approximation (SAR) [49].
The energy efficiency of the CDC is improved by lowering the
oversampling ratio (OSR) through the pre-calibration of the
capacitance range using 9 bit SAR operating with a capacitive

digital-to-analog converter (CDAC). Initially, the integrators
are disabled, and the CDAC voltage is directly connected to
the comparator to perform a SAR search of CDAC, as shown
in Fig. 9(a). After the SAR phase, �� CDC is activated
and generates a bit stream of the capacitor comparison result,
as shown in Fig. 9(b). The detailed schematic of the CDC
is shown in Fig. 9(c) and consists of two OTAs, one com-
parator, a 9-bit CDAC and switched capacitor circuits. This
work includes the energy efficient dynamic element match-
ing (DEM) method to improve the linearity of the 9-bit CDAC,
and the common centroid layout of the capacitor further
improves the linearity, as shown in Fig. 9(d). The performance
of this work and the state-of-the art CDCs are summarized
in Table. I.

B. Bio-Signal Monitoring

Bio-signal monitoring SoCs represent one of the most
prominent areas of circuit applications in the last decade.
The development of bio-signal sensors for use in personal
healthcare is expected to greatly improve the quality of human
life and help with early detection of disease. For instance, real-
time monitoring of electrocardiography (ECG) is an effective
method for the diagnosis and study of heart disorders such
as arrhythmia [17]. Neural signal monitoring from various
regions of the brain enables the detection of neurological
disorders such as epilepsy, schizophrenia, Alzheimer’s disease,
Parkinson’s disease and autism [51].

Reference [52] proposed a non-invasive multi-sensor
acquisition system with simultaneous ECG, bio-impedance
(BIO-Z), galvanic skin response (GSR) and photoplethys-
mogram (PPG) monitoring. The multi-parameter recording
provides a more accurate and reliable health assessment in
a comfortable wearable device.

There has been high demand for technologies to enable
simultaneous monitoring of a large number of neurons, and
multi electrode neural recoding is becoming standard prac-
tice [22], [33], [37], [40], [41], [53]–[61]. In this way, it is
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TABLE I

PERFORMANCE SUMMARY OF STATE-OF-THE-ART CDCS

Fig. 10. Examples of mm-scale sensor nodes for (a) temperature, (b) pressure,
and (c) image sensing.

possible to gather enough information from a specific part of
the brain related to motor planning and control, enabling direct
control of a robotic manipulator by cortical neurons.

The read-out circuits must be designed to consume ultra-low
power in order to avoid tissue damage caused by heat. Area is
another challenge of the read-out circuits. The read-out circuit
needs to provide sufficient immunity to the environmental
noise caused by the electrochemical behavior of its surround-
ings, requiring a high power supply rejection ratio (PSRR)
and common mode rejection ratio (CMRR). The input referred
noise specification is also challenging. The peak spike voltage
of the action potential (AP) of a neuron is 50-500 μV in
the 0.1-700 kHz frequency range [62]. Therefore, 2-3 μVrms
input referred noise is demanded for neural recoding read-
out circuits. The amplitude of the local field potential (LFP)
can be as high as 5 mV [63], but its ultra-low frequency
near sub-Hz makes it difficult to meet the noise specification
due to the large device flicker noise. Pseudo-resistors (section
II-C) are widely used to implement large time constants,
and the current reuse technique (section II-D) is useful for
minimizing power consumption while meeting a low noise
specification. Performance summary of the recently published
neural recording front-end circuits is presented in Table II.

C. Modular Design

Ultra-low power sensor nodes can be used in a wide
variety of applications, but the basic operation mechanisms are
similar, requiring common building blocks such as a wake-up

Fig. 11. Timing diagrams of a wireless sensor node (a) without timing
uncertainty (b) with timing uncertainty.

timer, RF or optical communication, an energy harvester and
a power management unit. Therefore, the modular design
of each functional block can reduce the development time,
verification overhead and manufacturing cost. Fig. 10 shows
millimeter-scale wireless sensor node designs for temperature
monitoring [2], pressure monitoring [16] and imaging [4]
developed based on a generic sensing platform [3].

IV. TIMING REFERENCE

The reduction of sleep power is critical to make a system
sustainable with limited harvested energy. Wake-up timers are
a key always-on building block that can dominate the sleep
power. Therefore, a wake-up timer must be designed with
a stringent power budget [21], [64]–[69]. A highly accurate
timing reference is also important if the sensor node is required
to maintain synchronization for peer-to-peer or asymmetric
communications. As an example, Fig. 11(a) shows a timing
diagram of two wireless sensor nodes that need to communi-
cate with each other. Each sensor node sleeps for an hour and
then wakes up for 100 ms to collect and process data. The data
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TABLE II

PERFORMANCE SUMMARY OF ANALOG FRONT-END CIRCUITS FOR NEURAL RECORDING APPLICATION

is transmitted every 4 hours. The power consumptions during
sleep, active and radio modes are 10 nW, 10 uW and 2 mW,
respectively. In this case study, the energy consumption in the
sleep mode is the dominant factor, emphasizing the need for an
ultra-low power wake-up timer. In contrast, the energy loss due
to timing uncertainty is more pronounced with the presence of
timing mismatch, as shown in Fig. 11(b). When the temper-
ature coefficient is 50 ppm/°, and the temperature difference
is 10°, the timing uncertainty is 500 ppm, which corresponds
to 1.8 sec. This timing uncertainty causes significant energy
loss for a sensor node that has to keep transmitting data until
its peer responds.

A crystal oscillator is a viable option to achieve such aggres-
sive power and accuracy specifications. Recently, a pulsed
driver technique published for 32-kHz crystal oscillators
reduced power consumption drastically, allowing crystal oscil-
lators to provide an accurate frequency of less than 100 ppm
across wide PVT variations while consuming only a few nano
watts [70], [71]. However, crystal oscillators require an off-
chip component, which is difficult to integrate in a millimeter-
scale sensor node [64].

On-chip clock generation techniques are useful when the
system may allow frequency uncertainty higher than 500 ppm.
Fig. 12 shows the power consumption of recently published
on-chip oscillators and their temperature coefficients. Gate
leakage-based oscillators offer sub-nW power consumption.
However, their oscillation frequencies can be as low as
a few hertz, and the frequency uncertainty is very high
(>10,000 ppm). Relaxation oscillators using an R-C time con-
stant generally offer moderate temperature coefficients of tens
of ppm/° with nano watt to micro watt power consumption.

In this section, we will discuss recent developments in
crystal and on-chip oscillators and discuss their advantages
with respect to use in millimeter-scale wireless sensor nodes.

Fig. 12. Summary of temperature coefficients and the power consumption
of the recently published on-chip oscillators.

A. Crystal Oscillator

Conventionally, a crystal resonator is driven by an inverter-
based amplifier in series with a resistor. However, there are
many sources of energy waste in such architectures. Most
notably, the inverter consumes static power due to the sinu-
soidal input voltage. The series resistance also dissipates a
significant amount of power due to the large voltage imposed
on it. A current-starved driver is proposed to minimize the
static power and eliminate the series resistor [72]. The lim-
ited oscillation amplitude achieved using the current-starved
driver reduces the power consumption drastically, but power
consumption remains higher than 27 nW [72], [73], which
is too large for integration into recent millimeter-scale wire-
less sensor nodes consuming less than 10 nW during sleep
mode [3], [74].

A pulsed driver for an ultra-low power crystal is proposed
in [70] and [75]. Fig. 13 shows a simplified circuit diagram
of the crystal driver. One of the crystal voltages, OSCIN,
is amplified and delivered to a delay-locked loop (DLL). The
DLL generates two narrow pulses that are located at the peaks
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TABLE III

PERFORMANCE SUMMARY OF ON-CHIP OSCILLATORS

Fig. 13. Block diagram of a pulse injection based crystal driver proposed
in [70].

of the crystal voltages, OSCIN and OSCDRV. Then, a level
converter shifts those pulses to a higher magnitude, and MP1
and MN1 are driven by the pulses. There are several advantages
provided by this architecture in terms of power consumption.
First, the crystal amplitude is restricted to 180 mV, which
reduces the power consumption of the crystal series resistance.
Second, the static power consumption of the driver switches
is very low because the transistors receive rectangular pulses,
and only one of MN1 and MP1 is enabled so that the leakage
current though each transistor is very small. Third, the driver
switch is only enabled when OSCDRV reaches its peak voltage.
Therefore, the voltage across the driver switches is small,
and most of the energy derived from the supply, EVDD, is
delivered to the crystal to regenerate the waveform. According
to eq. (19) and Fig. 12 in [70], when the drivers are properly
sized, approximately 90% of the energy is used to regenerate
the waveform of the crystal, and only 10% is dissipated
by the driver circuit. With the supplementary circuits of a
DLL, amplifier, pulse generators and level converters, this
work achieved 5.58 nW power consumption, which is a 4.8×
reduction compared with prior works.

B. On-Chip Oscillator

Conventionally, on-chip oscillators are developed using a
time constant provided by a monolithic resistance and capac-
itance pair as shown in Fig. 14(a). The frequency of the
oscillator is dominated by the R-C time constant but still

Fig. 14. (a) Conventional on-chip oscillators (b) An R-C oscillator using
constant charge subtraction proposed in [63] (c) A timing diagram of the
oscillator [64] (d) A resistive frequency-locking scheme proposed in [67].

affected by the comparator, buffer and reset switch delay, all
of which are known to be temperature-dependent. Therefore,
the delay caused by the supplementary components needs to
be negligible compared with the R-C delay, which consumes
a substantial amount of power.

Reference [65] introduces a constant charge subtraction
method to eliminate the frequency dependency stemming from
the comparator delay as shown in Fig. 14(b). A constant
current, IREF, generated by a temperature-compensated resistor
is provided to an integration capacitor, CINT. Instead of
the conventional approach of fully discharging the capacitor,
a constant amount of charge, VREF×C, is subtracted from CINT
when VINT exceeds VSUB. Therefore, the voltage drop by the
charge subtraction operation is always VREF×C/CINT, and thus
the time moment that VINT crosses VCOMP is independent of
the comparator delay. The output frequency is generated using
a duty-cycled continuous time comparator.

Reference [64] introduces a resistive frequency-locking
method that eliminates the comparator as shown in Fig. 14(d).
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In this architecture the impedance of a switched capacitor is
equalized to a temperature-compensated resistor by using a
frequency-locked loop implemented with an ultra-low power
amplifier. A wake-up timer that further reduces the power
consumption using a frequency-locked loop and a duty-cycled
resistor is proposed in [21].

The performances of recently published low power on-chip
oscillators are summarized in Table-III.

C. Frequency Synthesis

A simple ring oscillator used as a frequency generator is
acceptable in a processor despite the wide frequency variations
observed in response to environmental changes. This observa-
tion is true because the throughput of a sensor node is deter-
mined by the sensor interface circuits rather than the processor
speed. However, the change in the processor frequency results
in increased energy consumed by the processor core because
the active time is usually determined not by the workload of
the processor core but by the sensor signal acquisition time.
Therefore, the core frequency needs to be stabilized by locking
it to an accurate wake-up timer.

A phase-locked loop (PLL) using a frequency reference
generated by either a crystal or wake-up oscillator is a viable
option to reduce the power overhead caused by excessive
frequency. A charge-pump PLL, which is the most generic
architecture for SoC clock generation, is not well suited for
this purpose for several reasons. First, the VCO frequency
tuning range is limited due to the low supply voltage. Many
wireless sensor nodes operate with a supply voltage close
to the MOS threshold voltage to reduce power consump-
tion [76]. Under these conditions, the control voltage range
is very limited because of the small charge pump output
range resulting from the low supply voltage. Furthermore, the
delay cells in the VCO operate in a subthreshold region in
order to generate low frequencies, resulting in wide frequency
variations depending on the temperature and process changes,
thereby requiring an even larger control voltage range to
compensate for the frequency change. Second, the size of the
loop filter consumes a substantial amount of space. A sensor
node wake-up timer typically generates only a few kHz to
minimize its energy overhead during the sleep period. The
loop bandwidth of a PLL should be smaller than one-tenth of
the reference frequency [77] and result in either a very small
charge pump current or a very large loop filter capacitance.
On the other hand, a digital PLL scales well to the lower
loop bandwidth as its loop filter coefficients are represented as
digital values. For example, a digital loop filter of an all-digital
PLL receiving 32kHz reference clock [78] is implemented
with 14-bit words and its area occupation is 7-to-56x smaller
compared to the analog implementation mostly due to the
absence of the analog loop filter ([78], Table-V). Also, the
DCO frequency tuning range is less affected by the low supply
voltage. In addition, the frequency tuning code of a digital
PLL can be easily stored in memory and can be directly used
when the system wakes up from sleep mode, reducing the lock
time. Therefore, a digital PLL is better suited for the frequency
synthesizers in miniaturized systems.

V. CONCLUSION

Miniaturized sensor nodes have applications in fields such as
medicine, environmental monitoring and surveillance. Ultra-
low power circuit techniques have emerged as critical tools
to accelerate the miniaturization of sensor nodes due to the
limited energy and power budget resulting from the small
battery size and the harvester capability. In Part I of this
two-part paper, we described key front-end circuits, including
analog references, amplifiers and clock generators, of sensor
nodes and their design challenges. Further, recently proposed
ultra-low power circuit schemes to overcome such challenges
and realize miniaturized sensor nodes are reviewed.
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